An Unusual Case of Broken Heart

Ammar Hasan
HCA Healthcare, ammar.hasan@hcahealthcare.com

Enrique Rincon
HCA Healthcare, enrique.rincon@hcahealthcare.com

Follow this and additional works at: https://scholarlycommons.hcahealthcare.com/cardiology

Part of the Cardiology Commons, Cardiovascular Diseases Commons, Diagnosis Commons, and the Internal Medicine Commons

Recommended Citation
Hasan A, Rincon E. An Unusual Case of Broken Heart. Poster presented at: Texas Chapter of the American College of Physicians; October 25-27, 2019; San Antonio, TX.

This Poster is brought to you for free and open access by the Research & Publications at Scholarly Commons. It has been accepted for inclusion in Cardiology by an authorized administrator of Scholarly Commons.
PREIMPLANTATION GENETIC TESTING (PGT) AND FROZEN EMBRYO TRANSFER (FET) SYNERGISTICALLY DECREASE PRE-TERM DELIVERY IN PATIENTS UNDERGOING IN VITRO FERTILIZATION (IVF)

Luke Y. Ying, M.D.¹, Mark D. Sanchez, M.D.¹, James Baron, M.D.², and Ying Ying, Ph.D.²
(1)HCA West Florida GME Consortium/Brandon Regional Hospital, Brandon, FL; (2)University of South Florida Department of Obstetrics and Gynecology, Tampa, FL

Abstract

OBJECTIVE: To study the effects of FET and FET post PGT (FET/PGT) on pre-term and very pre-term deliveries in patients undergoing IVF with elective single embryo transfer (eSET).

DESIGN: Retrospective cohort study for Assisted Reproductive Technology (SART)-data study.

MATERIALS AND METHODS: A retrospective cohort study was conducted using the publicly available data in the SART National Summary Report from 2014 to 2017. Cycle inclusion criteria were eSET, fresh embryo transfers (ET), and frozen embryo transfers (FET) with or without PGT (FET/PGT). Exclusion criteria were use of geriatrician carriers and donor eggs. Pregnancy outcomes included live births and gestational age at delivery (term ≥37 weeks, pre-term ≥32 to <37 weeks, and very pre-term <32 weeks). Chi-squared test was used to compare variables between groups. A P value of <0.05 was considered statistically significant.

RESULTS: A total of 161,035 eSETs were analyzed for the effect of FET and PGT on IVF outcome and pre-term deliveries including 45,618 ETs, 58,812 FETs and 59,120 frozen embryo transfers post PGT (FET/PGT). Live birth rates in patients with FET/PGT were significantly higher than those in ET (52.9% vs 46.4%, P < 0.0001) and FET (52.9% vs 43.1%, P < 0.0001). Patients with FET had significantly lower live birth rate compared with that of ET (43.1% vs 46.4%, P < 0.0001). Both FET and FET/PGT significantly increased term deliveries compared with ET (98.2% vs 98.5% vs 88.6%, P < 0.05 and < 0.0001). There were no statistical differences among ET, FET and FET/PGT in terms of pre-term delivery; however, FET/PGT significantly reduced very pre-term deliveries when compared with ET and FET (1.5% vs 1.9%, P < 0.0001 and 1.5% vs 1.9%, P < 0.0002).

Conclusions: PGT has been integrated into one of the most important roles in IVF treatment. This study using large cohort SART data demonstrates that PGT significantly improves IVF outcome. Moreover, this study shows that patients undergoing PGT had significantly lower live birth rate compared with ET and FET. Higher term deliveries and lower incidence of very pre-term delivery associated with PGT should be taken into account when counseling patients seeking infertility treatment.

Objective

To study the effects of FET and FET post PGT (FET/PGT) on pre-term and very pre-term deliveries in patients undergoing IVF with elective single embryo transfer (eSET).

Background

- Pre-term delivery is associated with significant neonatal morbidity and mortality
- Multiple risk factors including age, ethnicity, and socioeconomic status.
- Associated causes including pre-term pre-labor rupture of membranes (PPROM), maternal or fetal infections such as chorioamnionitis, diabetes, and preeclampsia. IVF is associated with higher prevalence of pre-term birth.
- FET has become increasingly more common in IVF treatment.
- PGT for aneuploidy screening significantly increases implantation and live birth rates, as well as decreasing miscarriage rates.
- Studies of effect of PGT on neonatal outcomes are relatively rare.

Results

- Live birth rates in patients with FET/PGT were significantly higher than those in ET (52.9% vs 46.4%, P < 0.0001) and FET (52.9% vs 43.1%, P < 0.0001).
- Patients with FET had significantly lower live birth rate compared with that of ET (43.1% vs 46.4%, P < 0.0001).
- Both FET and FET/PGT significantly increased term deliveries compared with ET (98.2% vs 98.5% vs 88.6%, P < 0.05 and < 0.0001).
- No statistical difference in pre-term birth rate between ET, FET and FET/PGT.
- FET/PGT significantly reduced very pre-term deliveries compared to ET and FET (1.5% vs 2.0%, P < 0.0001 and 1.5% vs 1.9%, P = 0.0002), respectively.

Discussion

- Compared to fresh embryo transfer, FET with or without PGT was associated with increased term births.
- Patients undergoing PGT with subsequent FET also had significantly lower rates of very pre-term births compared to the ET and FET groups.
- Preterm-birth is associated with significant short- and long-term neonatal morbidity/mortality, as well as significant financial, psychological, and emotional to the families involved.
- The synergistic effect of PGT with FET in decreasing very pre-term births should be taken into account when counseling patients about to undergo infertility treatment.
- With decreasing associated costs over time, adoption of PGT with FET as the standard of care in IVF should be considered.

References

This research was supported in whole or in part by HCA and/or an HCA affiliated entity. The views expressed in this publication represent those of the author(s) and do not necessarily represent the official views of HCA or any of its affiliated entities.