

A case of viral pneumonia and acute respiratory distress syndrome during the COVID-19 pandemic

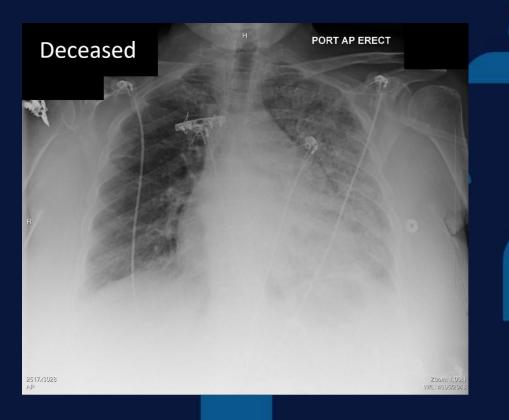
Mark Cheneler, Khizir Qureshi, Carlos Bahrami HCA MEDICAL CITY HEALTHCARE UNT-TCU Graduate Medical Education Internal Medicine Weatherford, Texas

Our mission

Above all else, we are committed to the care and improvement of human life.

Patient presentation

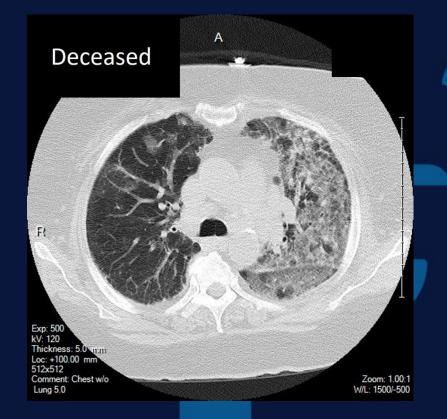
- Age: 67
- Chief complaint: dyspnea
- Vitals:
 - o SpO2 of 83% on room air
 - Heart rate of 123
- Examination:
 - o Moderate respiratory distress
 - o Crackles in left lower lung field


Past medical history

- Chronic obstructive pulmonary disease
 without use of chronic oxygen therapy
- Valvular atrial fibrillation from mechanical mitral valve on anticoagulation
- Former smoker with >90 pack year history and quit 3 years prior to presentation

Initial chest x ray showing extensive left sided infiltrates consistent with community acquired pneumonia

Medical City Weatherford Internal Medicine


Table 1. Hospital course overview from day 0-5

Time Point	Key Clinical Event	Oxygen Requirements
Hospital day 0	Admission Started on community acquired pneumonia treatment	2L via nasal cannula
Hospital day 2	Echocardiogram obtained showing EF of 40-45%	3L via nasal cannula
Hospital day 5	Successful direct current cardioversion of atrial flutter to sinus rhythm	3L via nasal cannula

CT chest without contrast showing extensive left sided pulmonary infiltrates and mediastinal adenopathy confirming multifocal pneumonia

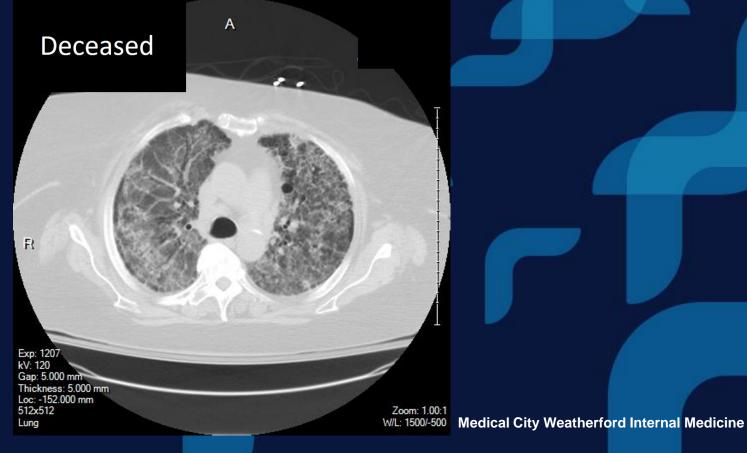
Medical City Weatherford Internal Medicine

Table 2. Hospital course overview from day 9-11

Time Point	Clinical Event	Oxygen Requirements
Hospital day 9	Admitted to the intensive care unit for continuous BiPAP Start hospital-acquired pneumonia treatment	BiPAP at 95% FiO2
Hospital day 11	Extensive serologic testing was unrevealing for source of pneumonia	BiPAP at 70% FiO2

Table 3. Results of serologic testing

Test	Result	Test	Result
Adenovirus DNA	Negative	Mycoplasma pneumonia IgM	< 770
Blastomyces antibody	Negative	Mycoplasma pneumonia DNA	Negative
Boca virus PCR	Negative	Parainfluenza 1 PCR	Negative
Chlamydia pneumoniae DNA		Parainfluenza 2 PCR	Negative
PCR	Negative	Parainfluenza 3 PCR	Negative
Coccidioides IgG antibody	0.2	Parainfluenza 4 PCR	Negative
Coccidioides IgM antibody	0.5	Pneumocystis carinii/jiroveci PCR	Negative
Coronavirus PCR	Negative	Aspergillus flavus antibody	Negative
SARS-CoV-2 PCR	Negative	Aspergillus fumigatus antibody	Negative
Histoplasma antigen	< 0.5	Aspergillus niger antibody	Negative
Urine histoplasma antigen	< 0.5	RSV PCR	Negative
Human metapneumovirus PCR	Negative	Rhinovirus PCR	Negative
Influenza A H1 PCR	Negative	Rickettsia IgG antibody	Negative
Influenza A H3 PCR	Negative	Rickettsia IgM antibody	0.4
Influenza type A antigen	Negative	Typhus fever group IgG	< 1:64
Influenza type A PCR	Negative	Typhus fever group IgM	< 1:64
Influenza type B antigen	Negative	SARS-CoV-2 RNA rapid NAAT	Negative
Influenza type B PCR	Negative	SARS-CoV-2 antibody total	Negative
Urine Legionella antigen	Negative	Urine Strep. pneumonia antigen	Negative
Mycoplasma pneumonia IgG	106 (<100)	Beta-(1,3)-glucan	36


Table 4. Hospital course overviewof day 15

Time Point	Clinical Event	Oxygen Requirements
Hospital day 15	Repeat CT chest showing progression of pneumonia to right sided infiltrates	Heated high flow nasal cannula on 60L flow and 90% FiO2

CT chest on hospital day 15 showing worsening of left sided infiltrates and evolution to bilateral infiltrates consistent with bilateral pneumonia and pulmonary edema

Table 5. Hospital course overviewfrom day 17-26

Time Point	Clinical Event	Oxygen Requirements
Hospital day 17	Bronchoscopy performed	BiPAP at 95% FiO2

Final chest x-ray on hospital day 32 after intubation and bronchoscopy showing bilateral diffuse nodular infiltrates consistent with acute respiratory distress syndrome

Medical City Weatherford Internal Medicine

Healthcare

Table 6. Hospital course overview from day 31-34

Time Point	Clinical Event	Oxygen Requirements
Hospital day 31 Ventilator day 10	General surgery consulted for tracheostomy and percutaneous endoscopic gastrostomy placement	Mechanical ventilator at 70% FiO2
Hospital day 33 Ventilator day 13	Started on treatment for ventilator associated pneumonia	Mechanical ventilator at 100% FiO2
Hospital day 34 Ventilator day 14	Husband and family elected for withdrawal of care and terminal extubation	Mechanical ventilator at 100% FiO2

Background

- Earliest reports of association with pulmonary disease in 1949
- Patient populations
 - o Trauma
 - Major surgery including cardiopulmonary bypass
 - Smokers
 - o Burns
 - o Chemoradiation therapy

- Infection
 - o Lower respiratory tract
 - o Pneumonia
 - o Necrotizing pneumonitis
- Incidence
 - o 0.5% in the general population
 - o 13-64% of ICU patients

Diagnosis

- Difficult as HSV infections may be a marker rather than a mediator
- No standardized diagnostic criteria
 - Cost prohibitive
 - Impractical
- Serology alone is unsatisfactory

- Clinician driven diagnosis
 - Clinical findings
 - o Radiographic imaging
 - Laboratory findings
 - Histopathologic findings

Treatment

- Systemic acyclovir
 - Improves time to death in the ICU (8 vs 22 days, p = 0.014)
 - o Reduce hazard ratio for ICU death (HR = 0.31, 95% CI 0.11–0.92, p = 0.035)
- Systemic corticosteroids
 - o Prevents development of fibrosis
 - o Increases risk of HSV infection with other infectious sources
- 40-60% mortality rate

Future investigation

- Literature review is limited due to the composition of articles available
 - o Primarily case studies
- Most retrospective studies are limited to small sample sizes
 - N = <50-100 patients
- Elucidation of causal vs correlational relationship in the ICU

References

- Jellinge ME et al. Herpes Simplex Virus Type 1 Pneumonia-A Review. J Intensive Care Med. 2021 Dec;36(12):1398-1402.
- 2. Schuller D. Lower respiratory tract reactivation of herpes simplex virus. Comparison of immunocompromised and immunocompetent hosts. *Chest.* 1994;106(1 Suppl):3S-7S; discussion 34S-35S.
- 3. Schuierer L et al. Impact of acyclovir use on survival of patients with ventilator-associated pneumonia and high load herpes simplex virus replication. *Crit Care*. 2020 Jan 10;24(1):12.
- 4. Luyt CE et al. Herpes simplex virus lung infection in patients undergoing prolonged mechanical ventilation. *Am J Respir Crit Care Med.* 2007;175(9):935-42.
- 5. Van den Brink JW et al. Respiratory herpes simplex virus type 1 infection/colonisation in the critically ill: marker or mediator? *J Clin Virol*. 2004;30(1):68-72.
- 6. Chang WJ et al. Outcomes of Herpes Simplex Virus Pneumonitis in Critically III Patients. Viruses. 2022;14(2):205.

