Analysis of Echocardiogram Findings in Stroke and TIA Patients

Venkatraman, MD, Chandan Mitra, MD and Rakesh Prashad, MD

Background

According to the American Heart Association, perfor transthoracic echocardiogram (TTE) in every confirm transient ischemic attack (TIA) is a class 2a recomn transesophageal echocardiogram TEE is a class 2b [1]. Multiple cardiac sources exist for strokes; valvul PFOs and several other etiologies. Echocardiograp cardiac causes or reveal actionable information; how research questions the efficacy of performing echoc inpatient setting since these smaller studies have share sh majority of echocardiograms do not yield actionable findings are even more relevant when the patient ha factors that are more likely to be the cause of the st embolic cause. In addition, previous research sugge for TEEs to find Patent Foramen Ovales (PFOs) mig in patients with risk factors that are more likely to ex [3].

This study evaluated the frequency of echocardiography in our patient population and the timeline in which subsequent procedures are performed. We plan to provide recommendations to guide current policies in an effort to shorten a patient's hospital stay, lessen complications from invasive diagnostic procedures, decreasing their frequency, or moving these procedures to the outpatient setting.

Objective

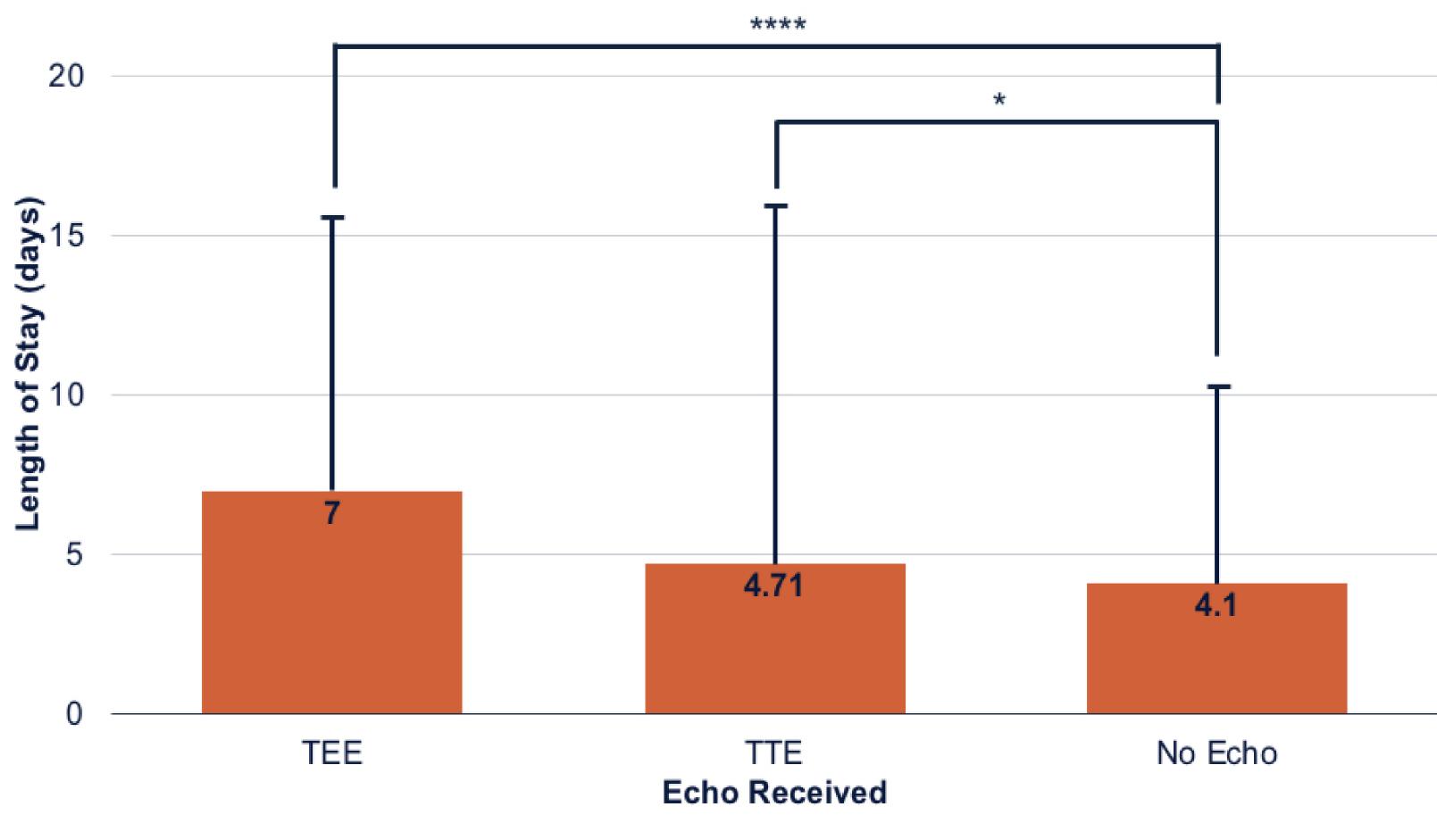
This study intends to determine the utility of in patient echocardiography in stroke patients. Specifically by examining the number of echocardiograms, the number and types of findings and the number of subsequent interventions.

We planned to analyze by negative binomial regression the length of stay and the kind of echo received. Additionally we planned to correlate the relationship between the type of echo performed and mortality as well as the type of echo and ICU admissions.

Connor M. Petrovich, MD, Anvita Anne, MD, Robyn Meadows, MA, Cristobal Cintron, DrPH, MSc, Anand

Methods

orming a
rmed stroke and
mendation and a
b recommendation
ular vegetations,
ohy may rule out
owever, previous
cardiography in an
shown the vast
e results [2]. These
nas multiple risk
troke than a cardio
gests that the need
ight be unwarranted
explain their stroke

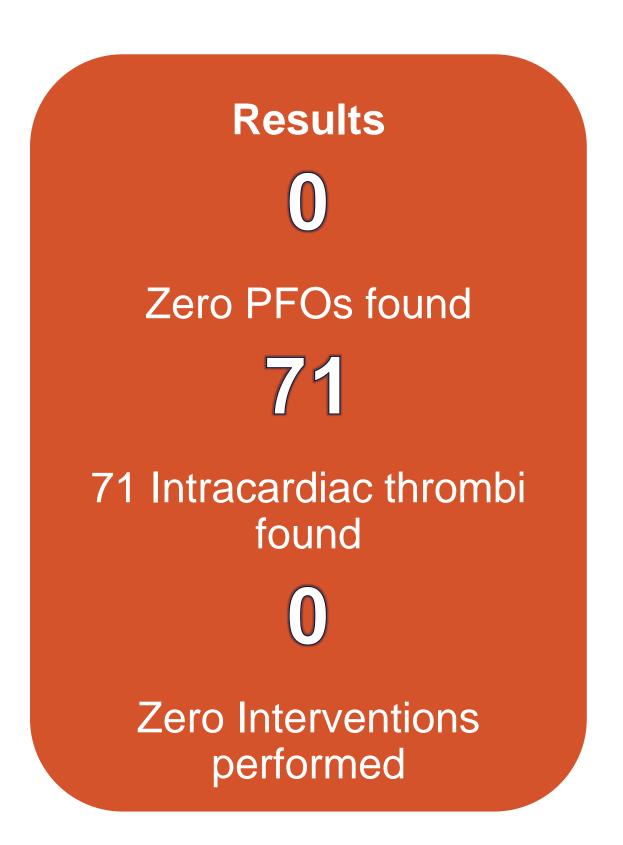

		Total	Thrombus	None
N (%)		49,216 (100.00)	137 (0.28)	49,079 (99.72)
Sex (N, %)	F	25,648 (52.11)	47 (34.31)	25,601 (52.16)
	Μ	23,568 (47.89)	90 (65.69)	23,478 (47.84)
AFIB (N, %)	0	39,648 (80.56)	102 (74.45)	39,546 (80.58)
	1	9,568 (19.44)	35 (25.55)	9,533 (19.42)
Smoking (N, %)	Unknown	4,791 (9.73)	16 (11.68)	4,775 (9.73)
	Never	23,126 (46.99)	51 (37.23)	23,075 (47.02)
	Former	11,860 (24.10)	26 (18.98)	11,834 (24.11)
	Current	9,439 (19.18)	44 (32.12)	9,395 (19.14)
Age (M, SD)		68.64 (13.88)	63.26 (13.47)	68.65 (13.88)
Elixhauser (M, SD)		4.79 (2.17)	5.99 (2.18)	4.78 (2.17)
Min Glasgow (N, M, SD)		11,363 13.67 (2.64)	85 13.19 (2.67)	11,278 13.68 (2.64)
Avg Glasgow (N, M, SD)		11,363 14.32 (1.68)	85 14.24 (1.51)	11,278 14.32 (1.68)

Demographics by Finding

This is a retrospective study within a large hospital system in Florida. Thirteen hospitals were included, three of which are stroke centers. We used ICD-10 codes to include any diagnosis that would lead the patient to be worked up as a potential stroke. We excluded any patient that had an ICD-10 code associated with a hemorrhagic stroke. A total of 49,216 patients met the criteria. We tracked how many had echocardiogram and whether they were TEEs or TTEs. We then used ICD-10 codes to see if a diagnosis had changed to include a PFO or Intracardiac thrombi. We also used CPT codes to see if any relevant procedures had been performed during their hospitalization. We recorded length of hospital stay and then compared those who had echocardiograms and those that did not.

Results

• **** p < 0.0001


• * p < 0.05

• Receiving a TTE increased the count of days by a factor of 1.028 compared to not receiving an echo at all (*p* < 0.05, 95% CI [1.004, 1.053]).

• Receiving TEE increased the count of days by a factor of 1.635 compared to not receiving an echo at all (*p* < 0.0001, 95% CI [1.560, 1.713])

Length of Stay by Echo Received

Many interesting points were found during this retrospective study. The most surprising of which was that not a single PFO was found. 71 intracardiac thrombi were found but no intervention was performed during their hospital stay. Their length of stay was also found to have significantly increased with an echocardiogram. The average length of stay was 4.11 days for patients who received no echocardiogram. For patients who had a TTE it was 4.71 and for patients who received a TEE it was 7.01.

Additionally it was found that a TEE correlated with a lower level of mortality and a higher rate of ICU admissions. This could be because TEEs were done in patient's who were under closer observation. However their general level of illness was corrected for by the Elixhauser Index.

Our results suggest that echocardiogarphy to evaluate the etiology of a stroke is not a necessary in-patient test. This is because the probability of finding intracardiac pathology is low and only a small percentage of those pathologies found would have interventions performed. The increased length of stay and potential complications that a patient is subjected to does not support the frequent use of echocardiography. Whether or not a patient requires an echocardiogram after a stroke is a clinical decision and should be made based on the patient's risk factors since those are what would determine an intervention. However the decision to do so in an inpatient setting should be weighed against the possibility of performing it in an outpatient setting. It should not be one made reflexively simply because a patient presented with stroke like symptoms or even if they had a confirmed ischemic stroke.

- to be unremarkable
- If thrombi are found, they are likely to not be worth intervening upon
- Echocardiograms, especially TTEs significantly increase a patient's length of stay

- 10.1503/cmaj.190111

HCA Florida Ocala Hospital

Discussion

Conclusion

Echocardiograms in this population are likely

References

. Leira, E. et al (2021, May 24). 2021 guideline for the prevention of stroke in patients with stroke and transient ischemic attack: A guideline from the American Heart Association/American Stroke Association. Stroke. Retrieved October 5, 2022, from https://www.ahajournals.org/doi/full/10.1161/STR.0000000000000375#d6260754e225

. Mike Fralick, Nicola Goldberg, Sagar Rohailla, Yishan Guo, Matthew J. Burke, Lauren Lapointe-Shaw, Janice L. Kwan, Adina S. Weinerman, Shail Rawal, Terence Tang, Fahad Razak, Amol A. VermaCMAJ Aug 2019, 191 (31) E853-E859; DOI:

. Maggiore, P., Bellinge, J., Chieng, D., White, D., Lan, N. S. R., Jaltotage, B., Ali, U., Gordon, M., Chung, K., Stobie, P., Ng, J., Hankey, G. J., & McQuillan, B. (2019). Ischaemic Stroke and the Echocardiographic "Bubble Study": Are We Screening the Right Patients? Heart, Lung & Circulation, 28(8), 1183–1189. https://doi.org/10.1016/j.hlc.2018.07.007

Mortality and Type of Echo									
								95% CI	
Parameter			DF Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq	Odds Ratio	Lower	Upper
Intercept		1	-8.7757	0.1979	1966.6798	<.0001			
ECHO	TEE	1	-0.6134	0.1866	10.8096	0.0010	0.541	0.376	0.781
ECHO	TTE	1	0.1361	0.0594	5.2599	0.0218	1.146	1.020	1.287
AGE		1	0.0501	0.00233	461.5636	<.0001	1.051	1.047	1.056
SEX	Μ	1	0.0269	0.0477	0.3164	0.5738	1.027	0.935	1.128
AFIB	1	1	0.4520	0.0497	82.8342	<.0001	1.571	1.426	1.732
ELIX		1	0.2808	0.00992	800.7532	<.0001	1.324	1.299	1.350
SMOKING_STAT	0	1	1.3934	0.0577	583.3125	<.0001	4.028	3.598	4.511
SMOKING_STAT	2	1	0.0337	0.0627	0.2888	0.5910	1.034	0.915	1.170
SMOKING_STAT	3	1	0.1927	0.0848	5.1622	0.0231	1.212	1.027	1.432

Parameter		
Intercept		1
ECHO	TEE	1
ECHO	TTE	1
AGE		1
SEX	Μ	1
AFIB	1	1
ELIX		1
SMOKING_STAT	0	1
SMOKING_STAT	2	1
SMOKING_STAT	3	1

Length of Stay and Type of Echo								
	IRR 95% CI							
Parameter		DF	IRR	Standard Error	Lower	Upper	Wald x ²	Pr > ChiSq
Intercept		1	1.107051	0.0278	1.048332	1.16906	13.36	0.0003
ECHO	TEE	1	1.634767	0.0239	1.559866	1.713435	421.46	<.0001
ECHO	TTE	1	1.028293	0.0124	1.003707	1.053481	5.1	0.024
AGE		1	1.0008	0.0004	1.0001	1.001501	4.8	0.0285
SEX	Μ	1	1.126821	0.0091	1.10683	1.147172	171.48	<.0001
AFIB	1	1	1.152692	0.0115	1.126933	1.179039	151.83	<.0001
ELIX		1	1.251572	0.0022	1.246077	1.257091	10053.7	<.0001
SMOKING_STAT	0	1	1.005817	0.0157	0.97531	1.037174	0.14	0.7123
SMOKING_STAT	2	1	1	0.0113	0.978045	1.022448	0	0.9997
SMOKING_STAT	3	1	1.0006	0.0127	0.975993	1.02593	0	0.9599
Dispersion		1	2.035009	0.0061	2.011137	2.059576		

This research was supported (in whole or in part) by HCA Healthcare and/or an HCA Healthcare affiliated entity. The views expressed in this publication represent those of the author(s) and do not necessarily represent the official views of HCA Healthcare or any of its affiliated entities.

ICU Admission	and Type of Echo				
				95% CI	
Standard	Wald				
Error	Chi-Square	Pr > ChiSq	Odds Ratio	Lower	Upper
0.0759	1093.2651	<.0001			
0.0585	175.3759	<.0001	2.169	1.934	2.433
0.0308	393.9153	<.0001	1.842	1.735	1.957
0.000997	40.7443	<.0001	0.994	0.992	0.996
0.0253	16.7478	<.0001	1.109	1.055	1.165
0.0301	221.8237	<.0001	1.565	1.476	1.660
0.00563	988.5165	<.0001	1.194	1.181	1.207
0.0391	295.9323	<.0001	1.959	1.815	2.115
0.0323	3.5544	0.0594	1.063	0.998	1.132
0.0351	43.1600	<.0001	1.259	1.175	1.349
	Standard Error 0.0759 0.0585 0.0308 0.000997 0.0253 0.0301 0.00563 0.0391 0.0323	ErrorChi-Square0.07591093.26510.0585175.37590.0308393.91530.00099740.74430.025316.74780.0301221.82370.03563988.51650.0391295.93230.03233.5544	StandardWaldErrorChi-Square $\Pr > ChiSq$ 0.07591093.2651<.0001	StandardWaldPr > ChiSqOdds RatioErrorChi-Square $\Pr > ChiSq$ Odds Ratio0.07591093.2651<.0001	StandardWald95% ClErrorChi-Square $Pr > ChiSq$ Odds RatioLower0.07591093.2651<.0001

 Interpretation – Mort 	ality was
decreased with a TE	E

Interpretation – ICU admissions were increased with any echo, especially a TEE

 Interpretation – Echos significantly increased length of stay

