

1.8% Balanced Sodium Bicarbonate/Sodium Chloride Compared to 3% Sodium Chloride for the Management of Cerebral Edema

Rebecca Ortega, PharmD PGY1 Pharmacy Resident Memorial Health University Medical Center – Savannah, GA Southeastern Residency Conference April 27-28, 2023

Disclosure Statement

These individuals have the following to disclose concerning possible financial or personal relationships with commercial entities (or their competitors) that may be referenced in this presentation.

- Rebecca Ortega (nothing to disclose)
- Project Advisors & Co-Investigators:
 - Eric Shaw, PhD (nothing to disclose)
 - Emily Bowers, PharmD (nothing to disclose)
 - Alisha B. Terry, PharmD (nothing to disclose)

MERCER Health

Background

Cerebral edema (CE)

- Swelling of brain from accumulation of excess fluid within cells or extracellular spaces
- Underlying cause(s) vary due to a variety of neurovascular injuries
- Leading cause of in-hospital mortality
- Peak at 24 to 96 hours after initial injury

Hypertonic saline

Neurocrit Care. 2020;32(3):647-666 Neuropharmacology. 2019;145(Pt B):230-246

Background

- Ongoing shortages pose challenges in using IV fluids for cerebral edema
- Memorial Health University Medical Center compounded a 1.8% balanced NaHCO₃/NaCl solution during national shortage of 3% NaCl and 23.4% NaCl

Neurocrit Care. 2020;32(3):647-666

Purpose

Assess the effect of 1.8% balanced sodium bicarbonate/sodium chloride solution administration to attain target serum sodium level compared to 3% sodium chloride for the management of cerebral edema

Methods

- Single-center, retrospective, observational, chart review
 October 1, 2021 to August 31, 2022
- Institutional Review Board approved

Inclusion Criteria	Exclusion Criteria
≥ 18 years of age	Received hyperosmolar therapy for Na ⁺ < 130 mEq/L
Critically ill patients	Brain dead within first 24 hours after injury
Received either 3% NaCl or 1.8% NaHCO ₃ /NaCl solution	Incarcerated
	Pregnant
	Required hemodialysis (HD) prior to hospital admission

Healthcare

affiliated entity. The views expressed in this publication represent those of the author(s) and not necessarily represent the official views of HCA Healthcare or any of its affiliated entities.

Outcomes

Primary outcome

Achievement of target serum Na⁺ levels

Secondary outcomes

- Time to goal serum Na⁺ range
- Net change in serum Na⁺ from start of hypertonic therapy to 96 hours
- Composite of neurologic outcomes
- Incidence of hyperchloremia (>109 mEq/L)
- Occurrence of acute kidney injury
- ICU length of stay
- Hospital length of stay
- Inpatient mortality

Memorial

MERCER

Patient Demographics

	1.8% NaHCO₃/NaCl n = 9	3% NaCl n = 9	<i>p</i> -value
Age in years, mean (±SD)	58 (±16)	67 (±15)	0.24
Male , n (%)	4 (44)	4 (44)	1.00
Comorbidities, n (%)			
End stage renal disease	1 (11)	-	
Atrial fibrillation	2 (22)	2 (22)	1.00
PE/DVT	-	-	
Type of injury, n (%)			
Intracranial hemorrhage	8 (89)	7 (78)	0.53
Acute ischemic stroke	2 (22)	3 (33)	0.60
Subdural hematoma	2 (22)	2 (22)	1.00
Subarachnoid hemorrhage	1 (11)	1 (11)	1.00
Diffuse axonal injury	-	-	
Epidural hematoma	-	-	

Primary outcome

Secondary outcomes

	1.8% NaHCO₃/NaCl n = 9	3% NaCl n = 9	<i>p</i> -value
Hospital LOS, mean (±SD)	11 (5.9)	6 (2.7)	0.50
ICU LOS, mean (±SD)	11 (5.9)	6 (2.7)	0.04
Inpatient mortality*, n (%)	3 (33)	4 (44)	0.63
Time to goal serum Na⁺ range, hrs	32.3	19.3	0.03
145-150 mEq/L	8.5	-	
150-155 mEq/L	37.3	24.9	
Net change in serum Na ⁺ from start of hypertonic therapy to 96 hrs, mean (±SD)	10 (5.5)	16 (8.5)	0.10
Incidence of AKI, n (%)	3 (37.5)	7 (78)	0.09

* = \geq 24 hours after injury

Secondary outcomes

	1.8% NaHCO₃/NaCl n = 9	3% NaCl n = 9	<i>p</i> -value
Composite of neurologic outcomes , n (%) Increased cerebral edema Hematoma expansion Worsening ICPs	9 (100) 3 (33) - 2 (22)	9 (100) 3 (33) - -	1.00
Unplanned surgical intervention* Craniotomy EVD Neurologic decline**	1 (11) 2 (22) 8 (89)	- 3 (33) 9 (100)	

* = ICP monitor placement, decompressive craniotomy, ** = decrease in GCS or need for intubation

Memorial Health

MERCER

Discussion

- Target serum sodium levels were achieved with 1.8% NaHCO₃/NaCl solution similarly achieved with 3% NaCl for cerebral edema management
- Use of 1.8% NaHCO₃/NaCl could be considered as an alternative to 3% NaCl for cerebral edema management.

Discussion

Strengths

- Novel study
- Included net change of Na⁺ and time to reach specific goal
- Included 96 hour trends of labs

Limitations

- Single-center, retrospective study
- Small sample size
 Power unable to be calculated
- Literature in this population is scarce with safe, efficacious alternative hyperosmolar therapy

Conclusion

Target serum sodium levels were achieved with the 1.8% NaHCO₃/NaCI solution similarly to that achieved with 3% NaCI for cerebral edema management.

Self Assessment Question

Does a 1.8% NaHCO₃/NaCI balanced solution attain target serum sodium levels for the management of cerebral edema if 3% NaCI is unavailable?

Acknowledgements

- Eric Shaw, PhD
- Emily Bowers, PharmD
- Alisha B. Terry, PharmD

1.8% Balanced Sodium Bicarbonate/Sodium Chloride Compared to 3% Sodium Chloride for the Management of Cerebral Edema

Rebecca Ortega, PharmD PGY1 Pharmacy Resident Memorial Health University Medical Center – Savannah, GA Southeastern Residency Conference April 27-28, 2023

